«««Назад | Оглавление | Каталог библиотеки | Далее»»»

прочитаноне прочитано
Прочитано: 51%

3.2. Зависимость заряда от скорости вынуждает пересмотреть толкование целого ряда экспериментов ядерной физики с частицами высоких энергий


         Прежде всего, зависимость заряда от скорости позволила получить новую формулу для потерь энергии заряженной частицей на тормозное излучение. Согласно этой формуле при увеличении скорости движения частицы на один порядок (в 10 раз) потери энергии частицей на тормозное излучение уменьшаются на пять порядков (в 100.000 раз).
         И тогда эта формула позволяет отождествить частицы космических лучей в опытах Андерсена и Неддермейера (выполненные еще в 1936-38 гг.) не с мюонами, как это делается в старой физике, а с электронами или позитронами высоких энергий (позитрон - это античастица по отношению к электрону, электрон имеет отрицательные электрический заряд, а позитрон положительный, а все другие их характеристики одинаковы), движущимися со сверхсветовыми скоростями.
         Например, скорость позитрона в верхней части знаменитой фотографии Андерсена и Неддермейера (см. журнал Physical Review, 1938, том 54, стр. 88-89) оказывается в 100 раз большей скорости света в вакууме, а скорость позитрона в нижней части этой же фотографии (после пролета сквозь корпус медного счетчика Гейгера) оказывается в 14 раз большей скорости света в вакууме.
         Но если мюоны оказывается возможным отождествить с электронами (или позитронами), то тогда так называемый распад мюона с позиций новой физики оказывается всего лишь столкновением электрона (или позитрона) с ядром атома вещества с передачей этому ядру части кинетической энергии.
         А поскольку по представлениям старой физики распад мюона происходит на электрон (или позитрон) и нейтрино, то нейтрино исчезает из числа частиц, существующих в реальной действительности.
         Пи-мезон, который распадается по представлениям старой физики на мюон и нейтрино, также оказывается с позиций новой физики всего лишь электроном (или позитроном) высокой энергии, движущимся с еще большей сверхсветовой скоростью.
         Уверенность в том, что "нейтрино" есть плод нашего воображения, подкрепляется и тем, что выполненный в 1927 году опыт Ч. Эллиса и У. Вустера (см. журнал Proc. Roy. Soc., 1927, том 117, стр. 109-123) по измерению средней энергии электронов бета-распада можно вполне естественно и до смешного просто объяснить, не привлекая гипотезу о существовании нейтрино.
         В самом деле, Эллис и Вустер, измерив энергию, выделившуюся в калориметре за определенный промежуток времени при бета-распаде ядер атомов радия-Е (висмута-210), раздели ее на количество электронов, вылетевших за это же время из радиоактивного вещества.
         Средняя энергия каждого из этих электронов оказалась примерно в три раза меньшей, чем энергия в 1,17 мегаэлектрон-вольт (МэВ), выделяющаяся при бета-распаде одного ядра радия-Е. Измерение энергии отдельных электронов бета-распада показало, что их кинетическая энергия принимает любые значения от 0 до максимального значения в 1,17 МэВ.
         Старая физика объяснила этот результат тем, что энергия, не выделившаяся в калориметре, уносится нейтральными частицами с громадной проникающей способностью - нейтрино, рождающимися наряду с электронами в процессе бета-рапада ядер.
         Но результат эксперимента Эллиса и Вустера можно объяснить гораздо проще: каждый первичный электрон бета-распада ядер, имеющий энергию в 1,17 МэВ, на своем пути сквозь радиоактивное вещество выбивает из атомов в среднем 2 вторичных электрона, так что энергия первичного электрона распределяется случайным образом между ним и всеми вторичными электронами.
         Таким образом, если предположить, что, в среднем, из каждых трех электронов, вылетающих из радиоактивного вещества при бета-распаде, только один является электроном, родившимся непосредственно в акте распада ядра, а два других электрона являются вторичными электронами, выбитыми первичным электроном из электронных оболочек атомов, то, чтобы определить среднюю энергию электронов бета-распада, энергию, выделившуюся в калориметре, нужно делить не на количество электронов, вылетевших за время эксперимента из радиоактивного вещества, как это сделали Эллис и Вустер, а на реальное количество распавшихся ядер.
         И тогда никакой недостачи энергии в реакции бета-распада обнаружено не будет, и гипотеза о рождении нейтрино в процессе бета-распада будет не нужна.
         При этом естественное объяснение без привлечения нейтрино получает и непрерывный энергетический спектр электронов бета-распада и известный экспериментальный факт зависимости числа электронов, вылетающих из бета-активного вещества, от формы радиоактивного вещества.

«««Назад | Оглавление | Каталог библиотеки | Далее»»»



 
Яндекс цитирования Locations of visitors to this page Rambler's Top100